o ooy o resources
for e reengineering
comeuity cnbe:

RonsissancoWoh /.

CHAPTER 31 REENGINEERING 877
Each of these options is viable. A software organization must choose the one that is
most appropriate for each case.

Reverse engineering. The term reverse engineering has its origins in the hardware
world. A company disassembles a competitive hardware product in an effort to un-
derstand its competitor’s design and manufacturing “secrets.” These secrets could be
easily understood if the competitor’s design and manufacturing specifications were
obtained. But these documents are proprietary and unavailable to the company do-
ing the reverse engineering. In essence, successful reverse engineering derives one
or more design and manufacturing specifications for a product by examining actual
specimens of the product.

Reverse engineering for software is quite similar. In most cases, however, the pro-
gram to be reverse engineered is not a competitor’s. Rather, it is the company’s own
work (often done many years earlier). The “secrets” to be understood are obscure be-
cause no specification was ever developed. Therefore, reverse engineering for soft-
ware is the process of analyzing a program in an effort to create a representation of
the program at a higher level of abstraction than source code. Reverse engineering
is a process of design recovery. Reverse engineering tools extract data, architectural,
and procedural design information from an existing program.

Code restructuring. The most common type of reengineering (actually, the use of
the term reengineering is questionable in this case) is code restructuring.> Some
legacy systems have a relatively solid program architecture, but individual modules
were coded in a way that makes them difficult to understand, test, and maintain. In
such cases, the code within the suspect modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring tool.
Violations of structured programming constructs are noted, and code is then re-
structured (this can be done automatically). The resultant restructured code is re-
viewed and tested to ensure that no anomalies have been introduced. Internal code
documentation is updated.

Data restructuring. A program with weak data architecture will be difficult to
adapt and enhance. In fact, for many applications, data architecture has more to do
with the long-term viability of a program that the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction,
data structuring is a full-scale reengineering activity. In most cases, data restructur-
ing begins with a reverse engineering activity. Current data architecture is dissected,
and necessary data models are defined (Chapter 9). Data objects and attributes are
identified, and existing data structures are reviewed for quality.

3 Code restructuring has some of the elements of “refactoring,” a redesign concept introduced in
Chapter 4 and discussed elsewhere in this book.

878

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

When data structure is weak (e.g., flat files are currently implemented, when a re-
lational approach would greatly simplify processing), the data are reengineered.

Because data architecture has a strong influence on program architecture and the
algorithms that populate it, changes to the data will invariably result in either archi-
tectural or code-level changes.

Forward engineering. In an ideal world, applications would be rebuilt using an
automated “reengineering engine.” The old program would be fed into the engine,
analyzed, restructured, and then regenerated in a form that exhibited the best as-
pects of software quality. In the short term, it is unlikely that such an “engine” will
appear, but vendors have introduced tools that provide a limited subset of these ca-
pabilities that addresses specific application domains (e.g., applications that are im-
plemented using a specific database system). More important, these reengineering
tools are becoming increasingly more sophisticated.

Forward engineering, also called renovation or reclamation [CHI90}], not only re-
covers design information from existing software, but uses this information to alter
or reconstitute the existing system in an effort to improve its overall quality. In most
cases, reengineered software reimplements the function of the existing system and
also adds new functions and/or improves overall performance.

ok - wieniitn:

Reverse engineering conjures an image of the “magic slot.” We feed a haphazardly de-
signed, undocumented source listing into the slot and out the other end comes a
complete design description (and full documentation) for the computer program. Un-
fortunately, the magic slot doesn't exist. Reverse engineering can extract design in-
formation from source code, but the abstraction level, the completeness of the
documentation, the degree to which tools and a human analyst work together, and
the directionality of the process are highly variable.

The abstraction level of a reverse engineering process and the tools used to effect
it refers to the sophistication of the design information that can be extracted from
source code. Ideally, the abstraction level should be as high as possible. That is, the
reverse engineering process should be capable of deriving procedural design repre-
sentations (a low-level abstraction), program and data structure information (a
somewhat higher level of abstraction), object models, data and/or control flow
models (a relatively high level of abstraction), and UML class, state and deployment
diagrams (a high level of abstraction). As the abstraction level increases, the soft-
ware engineer is provided with information that will allow easier understanding of
the program.

The completeness of a reverse engineering process refers to the level of detail that
is provided at an abstraction level. In most cases, the completeness decreases as the
abstraction level increases. For example, given a source code listing, it is relatively
easy to develop a complete procedural design representation. Simple design repre-

CHAPTER 31 REENGINEERING 879

The reverse
engineering
process

S
e,
POINT
Three reverse
engineering issues must
be addressed:
abstraction level,
completeness, and
directionality.

Dirty source code

ode
' Processing
Clean source code
|

Extract
abstractions

Interface

Initial specification Database

Refine &
simplify E

Final specification

}

sentations may also be derived, but it is far more difficult to develop a complete set
of UML diagrams or models.

Completeness improves in direct proportion to the amount of analysis performed
by the person doing reverse engineering. Interactivity refers to the degree to which
the human is “integrated” with automated tools to create an effective reverse engi-
neering process. In most cases, as the abstraction level increases, interactivity must
increase or completeness will suffer.

If the directionality of the reverse engineering process is one-way, all information
extracted from the source code is provided to the software engineer who can then use
it during any maintenance activity. If directionality is two-way, the information is fed
to a reengineering tool that attempts to restructure or regenerate the old program.

The reverse engineering process is represented in Figure 31.3. Before reverse en-
gineering activities can commence, unstructured (“dirty”) source code is restructured
(Section 31.4.1) so that it contains only the structured programming constructs.* This
makes the source code easier to read and provides the basis for all the subsequent
reverse engineering activities.

The core of reverse engineering is an activity called extract abstractions. The engineer must
evaluate the old program and from the (often undocumented) source code, develop a mean-
ingful specification of the processing that is performed, the user interface that is applied, and the
program data structures or database that is used.

4 Code can be restructured using a restructuring engine—a tool that restructures source code.

880

Seemingly insignificant
compromises in dota
structures can lead fo
potentially catastrophic
problems in future
years. Consider the
Y2K problem as an
example.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

31.3.1 Reverse Engineering to Understand Data

Reverse engineering of data occurs at different levels of abstraction and is often the
first reengineering task. At the program level, internal program data structures must
often be reverse engineered as part of an overall reengineering effort. At the system
level, global data structures (e.g., files, databases) are often reengineered to ac-
commodate new database management paradigms (e.g., the move from flat file to
relational or object-oriented database systems). Reverse engineering of the current
global data structures sets the stage for the introduction of a new system-wide
database.

Internal data structures. Reverse engineering techniques for internal program
data focus on the definition of classes of objects. This is accomplished by examining
the program code with the intent of grouping related program variables. In many
cases, the data organization within the code identifies abstract data types. For ex-
ample, record structures, files, lists, and other data structures often provide an initial
indicator of classes.

Database structure. Regardless of its logical organization and physical structure,
a database allows the definition of data objects and supports some method for es-
tablishing relationships among the objects. Therefore, reengineering one database
schema into another requires an understanding of existing objects and their rela-
tionships.

The following steps [PRE94] may be used to define the existing data model as a
precursor to reengineering a new database model: (1) build an initial object model,
(2) determine candidate keys, (3) refine the tentative classes, (4) define generaliza-
tions, and (5) discover associations (use techniques that are analogous to the CRC
approach). Once information defined in the preceding steps is known, a series of
transformations {PRE94] can be applied to map the old database structure into a new
database structure.

31.3.2 Reverse Engineering to Understand Processing

Reverse engineering to understand processing begins with an attempt to understand
and then extract procedural abstractions represented by the source code. To under-
stand procedural abstractions, the code is analyzed at varying levels of abstraction:
system, program, component, pattern, and statement.

The overall functionality of the entire application system must be understood be-
fore more detailed reverse engineering work occurs. This establishes a context for
further analysis and provides insight into interoperability issues among applications
within the system. Each of the programs that make up the application system repre-
sents a functional abstraction at a high level of detail. A block diagram, representing
the interaction between these functional abstractions, is created. Each component
performs some subfunction and represents a defined procedural abstraction. A
processing narrative for each component is developed. In some situations, system,

% How do |
understand
the workings of

an existing user
interface?

CHAPTER 31 REENGINEERING 881

program, and component specifications already exist. When this is the case, the
specifications are reviewed for conformance to existing code.®

5 passien for comprehension, just as there exists a passion for music. That possion kmﬁrm

Things become more complex when the code inside a component is considered.
The engineer looks for sections of code that represent generic procedural patterns. In
almost every component, a section of code prepares data for processing (within the
module), a different section of code does the processing, and another section of code
prepares the results of processing for export from the component. Within each of these
sections, we can encounter smaller patterns; for example, data validation and bounds
checking often occur within the section of code that prepares data for processing.

For large systems, reverse engineering is generally accomplished using a semi-
automated approach. Automated tools are used to help the software engineer un-
derstand the semantics of existing code. The output of this process is then passed to
restructuring and forward engineering tools to complete the reengineering process.

31.3.3 Reverse Engineering User Interfaces

Sophisticated GUIs are now de rigueur for computer-based products and systems of
every type. Therefore, the redevelopment of user interfaces has become one of the
most common types of reengineering activity. But before a user interface can be re-
built, reverse engineering should occur.

To fully understand an existing user interface, the structure and behavior of the
interface must be specified. Merlo and his colleagues [MER93] suggest three basic
questions that must be answered as reverse engineering of the Ul commences:

e What are the basic actions (e.g., keystrokes and mouse clicks) that the
interface must process?

e What is a compact description of the behavioral response of the system to
these actions?

e What is meant by a “replacement,” or more precisely, what concept of equiv-
alence of interfaces is relevant here?

Behavioral modeling notation (Chapter 8) can provide a means for developing an-
swers to the first two questions. Much of the information necessary to create a be-
havioral model can be obtained by observing the external manifestation of the
existing interface. But additional information necessary to create the behavioral
model must be extracted from the code.

5 Often, specifications written early in the life history of a program are never updated. As changes
are made, the code no longer conforms to the specification.

882 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

It is important to note that a replacement GUI may not mirror the old interface ex-
actly (in fact, it may be radically different). It is often worthwhile to develop new in-
teraction metaphors. For example, an old GUI requests that a user provide a scale
factor (ranging from 1 to 10) to shrink or magnify a graphical image. A reengineered
GUI might use a slide-bar and mouse to accomplish the same function.

Reverse Engineering

e/
Q Obijective: To help software engineers legacy C and C++ software” by reverse engineering
understand the internal design structure of and documenting source code.
complex programs. Understand, developed by Scientific Toolworks, Inc.

(www.scitools.com), parses Ada, Fortran, C, C++,
and Java “fo reverse engineer, automatically
document, calculate code metrics, and help you
understand, navigate and maintain source code.”

Mechanics: In most cases, reverse engineering tools
accept source code as input and produce a variefy of
structural, procedural, data, and behavioral design
representations.

Representative Tools® A comprehensive listing of' reverse.engineering tools can
Imagix 4D, developed by Imagix (www.imagix.com}, be found at http://scgwiki.iam.unibe.ch:8080/SCG/370.
\ “helps software developers understand complex or /

Software restructuring modifies source code and/or data in an effort to make it
amenable to future changes. In general, restructuring does not modify the overall
program architecture. It tends to focus on the design details of individual modules
and on local data structures defined within modules. If the restructuring effort ex-
tends beyond module boundaries and encompasses the software architecture, re-
structuring becomes forward engineering (Section 31.5).

Restructuring occurs when the basic architecture of an application is solid, even
though technical internals need work. It is initiated when major parts of the soft-
ware are serviceable and only a subset of all components and data need extensive
modification.’

31.4.1 Code Restructuring

Code restructuring is performed to yield a design that produces the same function as
the original program but with higher quality. In general, code restructuring techniques
(e.g., Warnier’s logical simplification techniques [WAR74]) model program logic using
Boolean algebra and then apply a series of transformation rules that yield restructured

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

7 Itis sometimes difficult to make a distinction between extensive restructuring and redevelopment.
Both are reengineering.

eADVICI’

Although code restuc-
turing con alleviate
immediate problems
associated with
debugging or small
changes, it is not
reengineering. Real
benefit is achieved only
when dato and architec-
ture are restructured.

CHAPTER 31 REENGINEERING 883

logic. The objective is to take “spaghetti-bowl” code and derive a procedural design
that conforms to the structured programming philosophy (Chapter 11).

Other restructuring techniques have also been proposed for use with reengineer-
ing tools. A resource exchange diagram maps each program module and the re-
sources (data types, procedures, and variables) that are exchanged between it and
other modules. By creating representations of resource flow, the program architec-
ture can be restructured to achieve minimum coupling among modules.

31.4.2 Data Restructuring

Before data restructuring can begin, a reverse engineering activity called analysis of
source code must be conducted. All programming language statements that contain
data definitions, file descriptions, 1/0, and interface descriptions are evaluated. The
intent is to extract data items and objects, to get information on data flow, and to un-
derstand the existing data structures that have been implemented. This activity is
sometimes called data analysis [RIC89].

Once data analysis has been completed, data redesign commences. In its simplest
form, a data record standardization step clarifies data definitions to achieve consis-
tency among data item names or physical record formats within an existing data
structure or file format. Another form of redesign, called data name rationalization,
ensures that all data naming conventions conform to local standards and that aliases
are eliminated as data flow through the system.

When restructuring moves beyond standardization and rationalization, physical
modifications to existing data structures are made to make the data design more ef-
fective. This may mean a translation from one file format to another, or in some
cases, translation from one type of database to another.

structures.

- Software Restructuring

A
Q Objective: The objective of restructuring tools variety of restructuring capabilities for COBOL,
is fo transform older unstructured computer C/C++, Java, FORTRAN 90, and VHDL.
software into modern programming languages and design ~ FORESYS, developed by Simulog (www.simulog.fr),

Mechanics: In general, source code is input and
transformed into a better siructured program. in some cases,
the transformation occurs within the same programming
language. In other cases, an older programming language
is transformed info a more modern language.

Representative Tools® that contains capabilities for restructuring poorly
DMS Software Reengineering Toolkit, developed by designed FORTRAN programs into the modern
\ Semantic Design (www.semdesigns.com), provides a FORTRAN or C standard. j

analyzes and transforms programs written in FORTRAN.
Function Encapsulation Tool, developed at Wayne State
University
(www.cs.wayne.edu/~vip/RefactoringTools/),
refactors older C programs into C++.
plusFORT, developed by Polyhedron
{www.polyhedron.com), is a suite of FORTRAN tools

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

884

4% What

“# options exist
when we're faced
with a poorly
designed and

implemented
program?

ancs‘

Reengineering is o lot
like getting your teeth
cleaned. You can think
of a thousand reasons
to delay it, and you'll
get away with procros:
tinating for quite a
while. But eventually,
your delaying tactics
will come back to
cause pain.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A program with control flow that is the graphic equivalent of a bowl of spaghetti,
with “modules” that are 2000 statements long, with few meaningful comment lines
in 290,000 source statements and no other documentation must be modified to ac-
commodate changing user requirements. We have the following options:

1. We can struggle through modification after modification, fighting the implicit
design and source code to implement the necessary changes.

2. We can attempt to understand the broader inner workings of the program in
an effort to make modifications more effectively.

3. We can redesign, recode, and test those portions of the software that re-
quire modification, applying a software engineering approach to all revised
segments.

4. We can completely redesign, recode, and test the program, using reengineer-
ing tools to assist us in understanding the current design.

There is no single “correct” option. Circumstances may dictate the first option even
if the others are more desirable.

Rather than waiting until a maintenance request is received, the development or
support organization uses the results of inventory analysis to select a program that
(1) will remain in use for a preselected number of years, (2) is currently being used
successfully, and (3) is likely to undergo major modification or enhancement in the
near future. Then, option 2, 3, or 4 is applied.

This preventative maintenance approach was pioneered by Miller [MIL81] under
the title structured retrofit. This concept is defined as “the application of today’s
methodologies to yesterday’s systems to support tomorrow’s requirements.”

At first glance, the suggestion that we redevelop a large program when a work-
ing version already exists may seem quite extravagant. Before passing judgment,
consider the following points:

1. The cost to maintain one line of source code may be 20 to 40 times the cost
of initial development of that line.

2. Redesign of the software architecture (program and/or data structure), using
modern design concepts, can greatly facilitate future maintenance.

3. Because a prototype of the software already exists, development productivity
should be much higher than average.

4. The user now has experience with the software. Therefore, new require-
ments and the direction of change can be ascertained with greater ease.

5. Automated tools for reengineering will facilitate some parts of the job.

6. A complete software configuration (documents, programs, and data) will ex-
ist upon completion of preventive maintenance.

ConaP

In some cases,
migration fo o
client/server architec-
ture should be
approached not as
reengineering, but as a
new development
effort. Reengineering
enters the picture only
when specific function-
ality from the old
system is to be infe-
grated info the new
architecture.

CHAPTER 31 REENGINEERING 885

When a software development organization sells software as a product, preven-
tive maintenance is seen in “new releases” of a program. A large in-house software
developer (e.g., a business systems software development group for a large con-
sumer products company) may have 500-2000 production programs within its do-
main of responsibility. These programs can be ranked by importance and then
reviewed as candidates for preventive maintenance.

The forward engineering process applies software engineering principles, con-
cepts, and methods to recreate an existing application. In most cases, forward engi-
neering does not simply create a modern equivalent of an older program. Rather,
new user and technology requirements are integrated into the reengineering effort.
The redeveloped program extends the capabilities of the older application.

31.5.1 Forward Engineering for Client/Server Architectures

Over the past few decades, many mainframe applications have been reengineered
to accommodate client/server architectures (including WebApps). In essence, cen-
tralized computing resources (including software) are distributed among many client
platforms. Although a variety of different distributed environments can be designed,
the typical mainframe application that is reengineered into a client/server architec-
ture has the following features:

¢ Application functionality migrates to each client computer.
e New GUI interfaces are implemented at the client sites.
e Database functions are allocated to the server.

e Specialized functionality (e.g., compute-intensive analysis) may remain at the
server site.

» New communications, security, archiving, and control requirements must be
established at both the client and server sites.

It is important to note that the migration from mainframe to client/server comput-
ing requires both business and software reengineering. In addition, an “enterprise
network infrastructure” [JAY94] should be established.

Reengineering for client/server applications begins with a thorough analysis of
the business environment that encompasses the existing mainframe. Three layers of
abstraction can be identified. The database layer sits at the foundation of a
client/server architecture and manages transactions and queries from client appli-
cations. Yet these transactions and queries must be controlled within the context of
a set of business rules (defined by an existing or reengineered business process).
Client applications provide targeted functionality to the user community.

The functions of the existing database management system and the data architec-
ture of the existing database must be reverse engineered as a precursor to the re-
design of the database layer. In some cases a new data model (Chapter 8) is created.
In every case, the client/server database is reengineered to ensure that transactions

886

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

are executed in a consistent manner, that all updates are performed only by author-
ized users, that core business rules are enforced (e.g., before a vendor record is
deleted, the server ensures that no related accounts payable, contracts, or communi-
cations exist for that vendor), that queries can be accommodated efficiently, and that
full archiving capability has been established.

The business rules layer represents software that is resident at both the client and
the server. This software performs control and coordination tasks to ensure that
transactions and queries between the client application and the database conform
to the established business process.

The client applications layer implements business functions that are required by
specific groups of end-users. In many instances, a mainframe application is seg-
mented into a number of smaller, reengineered desktop applications. Communica-
tion among the desktop applications (when necessary) is controlled by the business
rules layer. .

A comprehensive discussion of client/server software design and reengineering is
best left to books dedicated to the subject. The interested reader should see [VANO2],
[COU00], and [ORF99].

31.5.2 Forward Engineering for Object-Oriented Architectures

Object-oriented software engineering has become the development paradigm of
choice for many software organizations. But what about existing applications that
were developed using conventional methods? In some cases, the answer is to leave
such applications “as is.” In others, older applications must be reengineered so that
they can be easily integrated into large, object-oriented systems.

Reengineering conventional software into an object-oriented implementation
uses many of the same techniques discussed in Part 2 of this book. First, the existing
software is reverse engineered so that appropriate data, functional, and behavioral
models can be created. If the reengineered system extends the functionality or be-
havior of the original application, use-cases (Chapters 7 and 8) are created. The data
models created during reverse engineering are then used in conjunction with CRC
modeling (Chapter 8) to establish the basis for the definition of classes. Class hierar-
chies, object-relationship models, object-behavior models, and subsystems are de-
fined, and object-oriented design commences.

As object-oriented forward engineering progresses from analysis to design, a
CBSE process model (Chapter 30) can be invoked. If the old application exists
within a domain that is already populated by many object-oriented applications, it
is likely that a robust component library exists and can be used during forward
engineering.

For those classes that must be engineered from scratch, it may be possible to
reuse algorithms and data structures from the existing conventional application.
However, these must be redesigned to conform to the object-oriented architecture.

Gw:cs‘

What steps should we
follow to reengineer o
user inferface?

A 300+ page
handbook on
reengineering pattemns
(developed as port of
the FAMOOS ESPRIT
project can be
downloaded from
www.iam.unibe.
ch/~seg/
Archive /fomoos /
patterns /index3.
html.

CHAPTER 31 REENGINEERING 887

31.5.3 Forward Engineering User Interfaces

As applications migrate from the mainframe to the desktop, users are no longer will-
ing to tolerate arcane, character-based user interfaces. In fact, a significant portion
of all effort expended in the transition from mainframe to client/server computing
can be spent in the reengineering of client application user interfaces.

Merlo and his colleagues [MER95] suggest the following model for reengineering
user interfaces:

1. Understand the original interface and the data that move between it and the re-
mainder of the application. The intent is to understand how other elements of
a program interact with existing code that implements the interface. If a new
GUL is to be developed, the data that flow between the GUI and the remaining
program must be consistent with the data that currently flow between the
character-based interface and the program.

2. Remodel the behavior implied by the existing interface into a series of abstrac-
tions that have meaning in the context of a GUI. Although the mode of interac-
tion may be radically different, the business behavior exhibited by users of
the old and new interfaces (when considered in terms of a usage scenario)
must remain the same. A redesigned interface must still allow a user to ex-
hibit the appropriate business behavior. For example, when a database query
is to be made, the old interface may require a long series of text-based com-
mands to specify the query. The reengineered GUI may streamline the query
to a small sequence of mouse picks, but the intent and content of the query
remain unchanged.

3. Introduce improvements that make the mode of interaction more efficient. The
ergonomic failings of the existing interface are studied and corrected in the
design of the new GUI.

4. Build and integrate the new GUI. The existence of class libraries and auto-
mated tools can reduce the effort required to build the GUI significantly.
However, integration with existing application software can be more time
consuming. Care must be taken to ensure that the GUI does not propagate
adverse side effects into the remainder of the application.

o

* *You can pay a fitle now, or you can pay a lot more lofer.”

Signinunnﬂodnlmhbmt&gnhnq :

In a perfect world, every unmaintainable program would be retired immediately, to be
replaced by high-quality, reengineered applications developed using modern software
engineering practices. But we live in a world of limited resources. Reengineering

888

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

drains resources that can be used for other business purposes. Therefore, before an
organization attempts to reengineer an existing application, it should perform a
cost/benefit analysis.

A cost/benefit analysis model for reengineering has been proposed by Sneed
[SNE95]. Nine parameters are defined:

P, = current annual maintenance cost for an application

P, = current annual operation cost for an application

P, = current annual business value of an application

P, = predicted annual maintenance cost after reengineering
P; = predicted annual operations cost after reengineering
P, = predicted annual business value after reengineering

P; = estimated reengineering costs

Py = estimated reengineering calendar time

P, = reengineering risk factor (P; = 1.0 is nominal)

L = expected life of the system

The cost associated with continuing maintenance of a candidate application (i.e.,
reengineering is not performed) can be defined as

Craint = [P3 = (P + P)] X L (31-1)
The costs associated with reengineering are defined using the following relationship:
Creeng:[Pé'(P4+P5)X(L_PS)*(P7XP9)] (31-2)

Using the costs presented in Equations (31-1) and (31-2), the overall benefit of
reengineering can be computed as

cost benefit = Creeng — Crmaint (31-3)

The cost/benefit analysis presented in the equations can be performed for all high-
priority applications identified during inventory analysis (Section 31.2.2). Those ap-
plications that show the highest cost/benefit can be targeted for reengineering,
while work on others can be postponed until resources are available.

Reengineering occurs at two different levels of abstraction. At the business level,
reengineering focuses on the business process with the intent of making changes to
improve competitiveness in some area of the business. At the software level, reengi-
neering examines information systems and applications with the intent of restruc-
turing or reconstructing them so that they exhibit higher quality.

Business process reengineering defines business goals, identifies and evaluates
existing business processes (in the context of defined goals), specifies and designs
revised processes, and prototypes, refines, and instantiates them within a business.

CHAPTER 31 REENGINEERING 889

BPR has a focus that extends beyond software. The result of BPR is often the defini-
tion of ways in which information technologies can better support the business.

Software reengineering encompasses a series of activities that include inventory
analysis, document restructuring, reverse engineering, program and data restruc-
turing, and forward engineering. The intent of these activities is to create versions of
existing programs that exhibit higher quality and better maintainability—programs
that will be viable well into the twenty-first century.

Inventory analysis enables an organization to assess each application systemati-
cally, with the intent of determining which are candidates for reengineering. Docu-
ment restructuring creates a framework of documentation that is necessary for the
long-term support of an application. Reverse engineering is the process of analyzing
a program in an effort to extract data, architectural, and procedural design informa-
tion. Finally, forward engineering reconstructs a program using modern software en-
gineering practices and information learned during reverse engineering.

The cost/benefit of reengineering can be determined quantitatively. The cost of
the status quo, that is, the cost associated with ongoing support and maintenance of
an existing application, is compared to the projected costs of reengineering and the
resultant reduction in maintenance costs. In almost every case in which a program
has a long life and currently exhibits poor maintainability, reengineering represents
a cost-effective business strategy.

Bﬁzﬁgﬁugﬁﬁ —

[CAN72] Canning, R., “The Maintenance ‘Iceberg’,” EDP Analyzer, vol. 10, no. 10, October 1972.

[CAS88] "Case Tools for Reverse Engineering,” CASE Outlook, CASE Consulting Group, vol. 2, no.
2,1988, pp. 1-15.

[CHI90] Chikofsky, E. J., and J. H. Cross, II, “Reverse Engineering and Design Recovery: A Tax-
onomy,” IEEE Software, January 1990, pp. 13-17.

[COU00] Coulouris, G., J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design,
3rd ed., Addison-Wesley, 2000.

[DAV90] Davenport, T. H., and J. E. Young, “The New Industrial Engineering: Information Tech-
nology and Business Process Redesign,” Sloan Management Review, Summer 1990, pp. 11-27.

[DEM95] DeMarco, T, “Lean and Mean,” IEEE Software, November 1995, pp. 101-102.

[HAM90] Hammer, M., “Reengineer Work: Don’t Automate, Obliterate,” Harvard Business Review,
July-August 1990, pp. 104-112.

[HAN93] Manna, M., “Maintenance Burden Begging for a Remedy,” Datamation, April 1993,
pp. 53-63.

DAY94] Jaychandra, Y., Re-engineering the Networked Enterprise, McGraw-Hill, 1994.

[MER93] Merlo, E., et al., “Reverse Engineering of User Interfaces,” Proc. Working Conference on
Reverse Engincering, IEEE, Baltimore, May 1993, pp. 171-178.

[MER95] Merlo, E., et al., “Reengineering User Interfaces,” IEEE Software, January 1995,
pp. 64-73.

[MIL81] Miller, J., in Techniques of Program and System Maintenance, (G. Parikh, ed.) Winthrop
Publishers, 1981.

[ORF99] Orfali, R., D. Harkey, and J. Edwards, Client/Server Survival Guide, 3rd ed., Wiley, 1999.

[OSB90] Osborne, W. M., and E. J. Chikofsky, “Fitting Pieces to the Maintenance Puzzle,” IEEE
Software, January 1990, pp. 10-11.

[PRE94] Premerlani, W. J., and M. R. Blaha, “An Approach for Reverse Engineering of Relational
Databases,” CACM, vol. 37, no. 5, May 1994, pp. 42-49.

890

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

[RIC89] Ricketts, J. A, J. C. DelMonaco, and M. W. Weeks, “Data Reengineering for Application
Systems,” Proc. Conf. Software Maintenance—1989, 1IEEE, 1989, pp. 174-179.

[SNE95] Sneed, H., “Planning the Reengineering of Legacy Systems,” I[EEE Software, January
1995, pp. 24-25.

[STE93] Stewart, T. A., “Reengineering: The Hot New Managing Tool,” Fortune, August 23, 1993,
pp. 41-48.

[SWA76] Swanson, E. B., “The Dimensions of Maintenance,” Proc. Second Intl. Conf. Software En-
gineering, 1EEE, October 1976, pp. 492-497.

[VANO2] Van Steen, M., and A. Tanenbaum, Distributed Systems: Principles and Paradigms,
Prentice-Hall, 2002.

[WAR74] Warnier, J. D., Logical Construction of Programs, Van Nostrand-Reinhold, 1974.

31.1. Research the literature and/or Internet sources to find one or more papers that discuss
case studies of mainframe to client/server reengineering. Present a summary.

31.2. How would you determine P, through P; in the cost-benefit model presented in Sec-
tion 31.6?

31.3. Your instructor will select one of the programs that everyone in the class has developed
during this course. Exchange your program randomly with someone else in the class. Do not ex-
plain or walk through the program. Now, implement an enhancement (specified by your in-
structor) in the program you have received.

a. Perform all software engineering tasks including a brief walkthrough (but not with the au-
thor of the program).

b. Keep careful track of all errors encountered during testing.

c. Discuss your experiences in class.

31.4. Using information obtained via the Internet, present characteristics of three reverse en-
gineering tools to your class.

31.5. Explore the inventory analysis checklist presented at the SEPA Web site and attempt to
develop a quantitative software rating system that could be applied to existing programs in an
effort to pick candidate programs for reengineering. Your system should extend beyond eco-
nomic analysis presented in Section 31.6.

31.6. Some people believe that artificial intelligence technology will increase the abstraction
level of the reverse engineering process. Do some research on this subject (i.e., the use of Al for
reverse engineering), and write a brief paper that takes a stand on this point.

31.7. Suggest alternatives to paper and ink or conventional electronic documentation that
could serve as the basis for document restructuring. (Hint: Think of new descriptive technolo-
gies that could be used to communicate the intent of the software.)

31.8. Consider any job that you've held in the last five years. Describe the business process in
which you played a part. Use the BPR model described in Section 31.1.3 to recommend changes
to the process in an effort to make it more efficient.

31.9. Why is completeness difficult to achieve as abstraction level increases?
31.10. There is a subtle difference between restructuring and forward engineering. What is it?

31.11. Do some research on the efficacy of business process reengineering. Present pro and
con arguments for this approach.

31.12. Why must interactivity increase if completeness is to increase?

CHAPTER 31 REENGINEERING 891

Like many hot topics in the business community, the hype surrounding business process reengi-
neering has given way to a more pragmatic view of the subject. Hammer and Champy (Reengi-
neering the Corporation, HarperBusiness, revised edition, 2001) precipitated early interest with
their best-selling book. Later, Hammer (Beyond Reengineering: How the Processed-Centered Orga-
nization Is Changing Our Work and Our Lives, HarperCollins 1997) refined his view by focusing on
“process-centered” issues.

Books by Smith and Fingar (Business Process Management (BPM): The Third Wave, Meghan-
Kiffer Press, 2003), Jacka and Keller (Business Process Mapping: Improving Customer Satisfaction,
Wiley, 2001), Sharp and McDermott (Workflow Modeling, Artech House, 2001), Andersen (Busi-
ness Process Improvement Toolbox, American Society for Quality, 1999), and Harrington et al.
(Business Process Improvement Workbook, McGraw-Hill, 1997), present case studies and detailed
guidelines for BPR.

Feldmann (The Practical Guide to Business Process Reengineering Using IDEFO, Dorset House,
1998) discusses a modeling notation that assists in BPR. Berztiss (Software Methods for Business
Reengineering, Springer, 1996) and Spurr et al. (Software Assistance for Business Reengineering,
Wiley, 1994) discuss tools and techniques that facilitate BPR.

Secord and his colleagues (Modernizing Legacy Systems, Addison-Wesley, 2003), Ulrich
(Legacy Systems: Transformation Strategies, Prentice-Hall, 2002), Valenti (Successful Software
Reengineering, IRM Press, 2002), and Rada (Reengineering Software: How to Reuse Programming
to Build New, State-of-the-Art Software, Fitzroy Dearborn Publishers, 1999) focus on strategies and
practices for reengineering at a technical level. Miller (Reengineering Legacy Software Systems,
Digital Press, 1998) “provides a framework for keeping application systems synchroniZed with
business strategies and technology changes.” Umar (Application (Re)Engineering: Building Web-
Based Applications and Dealing with Legacies, Prentice-Hall, 1997) provides worthwhile ghidance
for organizations that want to transform legacy systems into a Web-based environment. Cook
(Building Enterprise Information Architectures: Reengineering Information Systems, Prentice-Hall,
1996) discusses the bridge between BPR and information technology. Aiken (Data Reverse Engi-
neering, McGraw-Hill, 1996) discusses how to reclaim, reorganize, and reuse organizational data.
Arnold (Software Reengineering, IEEE Computer Society Press, 1993) has put together an excel-
lent anthology of early papers that focus on software reengineering technologies.

A wide variety of information sources on software reengineering is available on the Internet.
An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

data

ethics

information
knowledge

people

process

scope of change
software revisited
technology treads

engineering will d’nngein!hemnhead ¢

Who does it? Everyone! i

Why is it important? Why did ancient kmgs unequivocally wrong
hire soothsayers? Why do major mulfinational Rilly
corporations hire consulting firms and think
tanks to prepare forecasts? Why does a sub-
stantial percentage of the public read horo-
scopes? We want to know
can ready ourselves.

892

THE RoAD
AHEAD

ware engineering. We presented both management procedures and technical

methods, basic principles and specialized techniques, people-oriented activ-
ities and tasks that are amenable to automation, paper and pencil notation, and
software tools. We argued that measurement, discipline, and an overriding focus
on quality will result in software that meets the customer’s needs, software that
is reliable, software that is maintainable, software that is better. Yet, we have
never promised that software engineering is a panacea.

As we continue our journey into a new century, software and systems tech-
nologies remain a challenge for every software professional and every company
that builds computer-based systems. Although he wrote these words with a twen-
tieth century outlook, Max Hopper [HOP90] accurately describes the current state
of affairs:

I n the 31 chapters that have preceded this one, we explored a process for soft-

Because changes in information technology are becoming so rapid and unforgiving,
and the consequences of falling behind are so irreversible, companies will either mas-
ter the technology or die . . . Think of it as a technology treadmill. Companies will have
to run harder and harder just to stay in place.

m ‘are the W? There is no formula for
dicting the road ahead. We attempt to do this
ng ita, orgcmlzm it to provide use-
"Rl information, examining subfle associations fo
g Mmct knowledge, and from this knowledge,
suggest probable occurrences that predict how
, ~thmgs will be at some future time.
~ What is the work product? A view of the
near-term future that may or may not be correct.
v do | ensure that I’'ve done it right?
Ffad'cﬁn the road ahead is an art, not a sci-
, , if's quite rare when a serious pre-
abooi the future is absolutely right or
{with the exception, thank-
; pfedlchonsohheend of the world). We
ook for trends and try to extrapolate them
chead in fime. We can ossess the correcness of
s fime passes
at's coming so we

CHAPTER 32 THE ROAD AHEAD 893

Changes in software engineering technology are indeed “rapid and unforgiving,”
while at the same time progress is often quite slow. By the time a decision is made °
to adopt a new method (or a new tool), conduct the training necessary to understand
its application, and introduce the technology into the software development culture,
something newer (and even better) has come along, and the process begins anew.
In this chapter, we examine the road ahead. Our intent is not to explore every area
of research the holds promise. Nor is it to gaze into a “crystal ball” and prognosticate
about the future. Rather, we explore the scope of change and the way in which
change itself will affect the software engineering process in the years ahead.

The importance of computer software can be stated in many ways. In Chapter 1, soft-
ware was characterized as a differentiator. The function delivered by software dif-
ferentiates products, systems, and services and provides competitive advantage in
the marketplace. But software is more than a differentiator. The programs, docu-
ments, and data that are software help to generate the most important commodity
that any individual, business, or government can acquire—information. Pressman
and Herron [PRE91] describe software in the following way:

Computer software is one of only a few key technologies that will have a significant im-
pact on nearly every aspect of modern society . . . It is a mechanism for automating busi-
ness, industry, and government, a medium for transferring new technology, a method of
capturing valuable expertise for use by others, a means for differentiating one company’s
products from its competitors, and a window into a corporation'’s collective knowledge.
Software is pivotal to nearly every aspect of business. But in many ways, software is also
a hidden technology. We encounter software (often without realizing it) when we travel
to work, make any retail purchase, stop at the bank, make a phone call, visit the doctor,
or perform any of the hundreds of day-to-day activities that reflect modern life.

The pervasiveness of software leads us to a simple conclusion: Whenever a tech-
nology has a broad impact—an impact that can save lives or endanger them, build
businesses or destroy them, inform government leaders or mislead them—it must be
handled with care.

“Predictions are very difficult to make, especially when they deal with the future.”
Mark Twain

32.2 THE SCOPE OF CHANGE
The changes in computing over the past 50 years have been driven by advances in
the hard sciences—physics, chemistry, materials science, and engineering. This
trend will continue during the first quarter of the twenty-first century. The impact of
new technologies is pervasive—on communications, energy, healthcare, transporta-
tion, entertainment, economics, manufacturing, and warfare, to name only a few.

894

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

.

conditions or attached to a soldier’s uniform to monitor
the presence of biological and chemical weapons.

OLED displays—An OLED “uses a carbon-based
designer molecule that emits light when an electric
current passes through it. Piece lots of molecules -
together and you've got a superthin display of stunning
quality—no power-draining backlight required.”
[PCMO3] The result—ultra-thin displays that can be
rolled up or folded, sprayed onto a curved surface, or
otherwise adapted to a specific environment.

Grid computing—this fechnology (available today)

Technologies to Waich

The editors of PC Magazine [PCMO3] prepare

an annual “Future Tech” issue that “[sorts]
through all the chatter (there’s a lot of it) to identify 20 of
the most promising technologies of tomorrow.” The
technologies noted run the gamut from healthcare to
warfare. However, it's interesting to note that software and
software engineering have a significant role to play in
every one, either as an enabler for the technology or an
integral part of it. The following represents a sampling of
the technologies noted:
Carbon nanotubes—uwith a finy graphite-like structure,

carbon nanotubes can serve as wires to transmit
signals from one point to another and as transistors,
using signal changes to store information. These

creates a network that taps the billions of unused CPU
cycles from every machine on the network and allows
exceedingly complex computing jobs to be completed

devices show promise for use in the development of
smaller, faster, lower energy, and less expensive
electronic devices [e.g., microprocessors, memory,
displays).

Biosensors—external or implantable microelectronic
sensors are already in use for detecting everything
from chemical agents in the air we breathe to blood
levels in a cardiac patient. As these sensors become
more sophisticated, they may be implanted in medical

K patients to monitor a variety of health-related

without a dedicated supercomputer. For a real-life
example encompassing over 4.5 million computers,
visit htip://setiathome.berkeley.edu/.

Cognitive machines—the ‘holy grail’ in the robotics
field is to develop machines that are aware of their
environment, that can “pick up on cues, respond to
ever-changing situations, and interact with people
naturally” [PCM03]. Cognitive machines are still in the
early stages of development, but the potential (if ever

achieved) is enormous.)

Over the longer term, revolutionary advances in computing may well be driven by

For predictions about soft sciences—human psychology, sociology, philosophy, anthropology, and others.
the futue of The gestation period for the computing technologies that may be derived from these
tachnology and other L

matters sae disciplines is very difficult to predict, but early influences have already begun (e.g.,
www.hutwefodeg. the communities—an anthropological construct—of users that are an off-shoot of

om, peer-to-peer networks).

The influence of the soft sciences may help mold the direction of computing re-
search in the hard sciences. For example, the design of future computers may be
guided more by an understanding of brain physiology than an understanding of con-
ventional microelectronics.

In the shorter term, the changes that will affect software engineering over the
next decade will be influenced by four simultaneous sources: (1) the people who
do the work, (2) the process that they apply, (3) the nature of information, and
(4) the underlying computing technology. In the sections that follow, each of these
components—people, the process, information, and the technology—is examined
in more detail.

CHAPTER 32 THE ROAD AHEAD 895

The software required for high-technology systems becomes more and more com-
plex with each passing year, and the size of resultant programs increases propor-
tionally. The rapid growth in the size of the “average” program would present us with
few problems if it wasn't for one simple fact: As program size increases, the number
of people who must work on the program must also increase.

Experience indicates that as the number of people on a software project team in-
creases, the overall productivity of the group may suffer. One way around this problem
is to create a number of software engineering teams, thereby compartmentalizing peo-
ple into individual working groups. However, as the number of software engineering
teams grows, communication between them becomes as difficult and time consuming
as communication between individuals. Worse, communication (between individuals
or teams) tends to be inefficient—that is, too much time is spent transferring too little
information content, and all too often, important information “falls into the cracks.”

“Future shock [is] the shattering siress and disorientation that we induce in individuals by subp:hag hm oo
- ouch chonge in 100 short @ period of time.”

If the software engineering community is to deal effectively with the communica-
tion dilemma, the road ahead for software engineers must include radical changes
in the way individuals and teams communicate with one another. E-mail, Web sites,
and centralized video conferencing are now commonplace as mechanisms for con-
necting a large number of people to an information network. The importance of
these tools in the context of software engineering work cannot be overemphasized.
With an effective electronic mail or instant messaging system, the problem encoun-
tered by a software engineer in New York City may be solved with the help of a col-
league in Tokyo. In a very real sense, focused chat sessions and specialized
newsgroups become knowledge repositories that allow the collective wisdom of a
large group of technologists to be brought to bear on a technical problem or man-
agement issue.

Video personalizes the communication. At its best, it enables colleagues at dif-
ferent locations (or on different continents) to “meet” on a regular basis. But video
also provides another benefit. It can be used as a repository for knowledge about the
software and to train newcomers on a project.

. "The proper artistic response o digital technology is fo embrace it as a new window on everything thot's eternally
“human, ond 1o use it with passion, wisdom, fearlessness and joy.” 3 ;
Ralph Lombreglin

eumcso.

More and more
“nonprogrammers” are
building their own
(small) applicafions.
This orrgoing trend is
likely to accelerate info
the future. Should these
“civilians” apply the
technology discussed in
this book ? Probably
not. But they should
adopt an agile software
engineering philosophy,
even if they don’t adopt
the practice.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The evolution of intelligent agents will also change the work patterns of a soft-
ware engineer by dramatically extending the capabilities of software tools. Intelli-
gent agents will enhance the engineer’s ability by cross-checking engineering work
products using domain-specific knowledge, performing clerical tasks, doing directed
research, and coordinating human-to-human communication.

Finally, the acquisition of knowledge is changing in profound ways. On the Inter-
net, a software engineer can subscribe to newsgroups that focus on technology ar-
eas of immediate concern. A question posted within a newsgroup precipitates
answers from other interested parties around the globe. The World Wide Web pro-
vides a software engineer with the world’s largest library of research papers and re-
ports, tutorials, commentary, and references in software engineering.

If past history is any indication, it is fair to say that people themselves will not
change. However, the ways in which they communicate, the environment in which
they work, the way in which they acquire knowledge, the methods and tools that
they use, the discipline that they apply, and therefore, the overall culture for software
development will change in significant and even profound ways.

It is reasonable to characterize the first two decades of software engineering prac-
tice as the era of “linear thinking.” Fostered by the classic life cycle model, software
engineering was approached as a linear activity in which a series of sequential steps
could be applied in an effort to solve complex problems. Yet, linear approaches to
software development run counter to the way in which most systems are actually
built. In reality, complex systems evolve iteratively, even incrementally. It is for this
reason that a large segment of the software engineering community is moving to-
ward agile, incremental models for software development.

Agile, incremental process models recognize that uncertainty dominates most
projects, that timelines are often impossibly short, and that iteration provides the
ability to deliver a partial solution, even when a complete product is not possible
within the time allotted. Evolutionary models emphasize the need for incremental
work products, risk analysis, planning and then plan revision, and customer feed-
back. In many instances, the software team applies an “agile manifesto” (Chapter 4)
that emphasizes “individuals and interactions over processes and tools; working
software over comprehensive documentation; customer collaboration over contract
negotiation, and responding to change over following a plan” [BECO1].

“The best preparation for good work tomorrow is to do good work today.”
= , Elbert Hubbard

Object technologies, coupled with component-based software engineering
(Chapter 30), are a natural outgrowth of the trend toward incremental and evolu-

CHAPTER 32 THE ROAD AHEAD 897

tionary process models. Both will have a profound impact on software development
productivity and product quality. Component reuse provides immediate and com-
pelling benefits. When reuse is coupled with CASE tools for application prototyping,
program increments can be built far more rapidly than through the use of conven-
tional approaches. Prototyping draws the customer into the process. Therefore, it is
likely that customers and users will become much more involved in the development
of software. This, in turn, may lead to higher end-user satisfaction and better soft-
ware quality overall.

The rapid growth in network and multimedia technologies (e.g., the exponential in-
crease in WebApps over the past decade) is changing both the software engineering
process and its participants. Again, we encounter an agile, incremental paradigm that
emphasizes immediacy, security, and aesthetics as well as more conventional soft-
ware engineering concerns. Modern software teams (€.g., a Web engineering team) of-
ten meld technologists with content specialists (e.g., artists, musicians, videographers)
to build an information source for a community of users that is both large and unpre-
dictable. The software that has grown out of these technologies has already resulted
in radical economic and cultural change. Although the basic concepts and principles
discussed in this book are applicable, the software engineering process must adapt.

Over the history of computing, a subtle transition has occurred in the terminology
that is used to describe software development work performed for the business com-
munity. Forty years ago, the term data processing was the operative phrase for de-
scribing the use of computers in a business context. Today, data processing has given
way to another phrase—information technology—that implies the same thing but
presents a subtle shift in focus. The emphasis is not merely to process large quanti-
ties of data but rather to extract meaningful information from this data. Obviously,
this was always the intent, but the shift in terminology reflects a far more important
shift in management philosophy.

When software applications are discussed today, the words data and information
occur repeatedly. We encounter the word knowledge in some artificial intelligence
applications, but its use is relatively rare. Virtually no one discusses wisdom in the
context of software applications.

Data is raw information—collections of facts that must be processed to be mean-
ingful. Information is derived by associating facts within a given context. Knowledge
associates information obtained in-one context with other information obtained in a
different context. Finally, wisdom occurs when generalized principles are derived
from disparate knowledge. Each of these four views of “information” is represented
schematically in Figure 32.1.

To date, the vast majority of all software has been built to process data or infor-
mation. Software engineers are now equally concerned with systems that process

898

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

An “informa-
tion” spectrum

: e

Data: Information:
no associativity associativity within
one context

Knowledge: Wisdom:
associativity within creation of generalized
multiple contexts principles based on

existing knowledge
from different sources

knowledge.' Knowledge is two-dimensional. Information collected on a variety of
related and unrelated topics is connected to form a body of fact that we call knowl-
edge. The key is our ability to associate information from a variety of different
sources that may not have any obvious connection and combine it in a way that pro-
vides us with some distinct benefit.

. “Wisdom isthe power that enobles us 10 use knowledge fo the benefitof ourselves and others.”
Thomas J. Watson

To illustrate the progression from data to knowledge, consider census data indi-
cating that the birthrate in 1996 in the United States was 4.9 million. This number
represents a data value. Relating this piece of data with birthrates for the preceding
40 years, we can derive a useful piece of information—aging “baby boomers” of the
1950s and early 1960s made a last gasp effort to have children prior to the end of
their child-bearing years. In addition “gen-Xers” began their childbearing years. The
census data can then be connected to other seemingly unrelated pieces of informa-
tion. For example, the current number of elementary school teachers who will retire
during the next decade, the number of college students graduating with degrees in
primary and secondary education, the pressure on politicians to hold down taxes and
therefore limit pay increases for teachers.

All of these pieces of information can be combined to formulate a representation
of knowledge—there will be significant pressure on the education system in the
United States in the first decade of the twenty-first century, and this pressure will

1 The rapid growth of data mining and data warehousing technologies reflect this growing trend.

CHAPTER 32 THE ROAD AHEAD 899

continue for over a decade. Using this knowledge, a business opportunity may
emerge. There may be significant opportunity to develop new modes of learning that
are more effective and less costly than current approaches.

The road ahead for software leads to systems that process knowledge. We have
been processing data using computers for over 50 years and extracting information
for more than three decades. One of the most significant challenges facing the soft-
ware engineering community is to build systems that take the next step along the
spectrum-—systems that extract knowledge from data and information in a way that
is practical and beneficial.

The people who build and use software, the software engineering process that is ap-
plied, and the information that is produced are all affected by advances in hardware
and software technology. Historically, hardware has served as the technology driver
in computing. A new hardware technology provides potential. Software builders
then react to customer demands in an attempt to tap the potential.

The road ahead for hardware technology is likely to progress along two parallel
paths. Along one path, hardware technologies will continue to evolve at a rapid
pace. With greater capacity provided by traditional hardware architectures, the de-
mands on software engineers will continue to grow.

But the real changes in hardware technology may occur along another path.
The development of nontraditional hardware architectures (e.g., carbon nan-
otubes, EUL microprocessors, cognitive machines, grid-computing) may cause
radical changes in the kind of software that we build and fundamental changes in
our approach to software engineering. Since these nontraditional approaches are
only now maturing, it is difficult to determine which will have broad-based impact
and even more difficult to predict how the world of software will change to ac-
commodate them.

The road ahead for software engineering is driven by software technologies.
Reuse and component-based software engineering offer the best opportunity for or-
der of magnitude improvements in system quality and time to market. In fact, as time
passes, the software business may begin to look very much like the hardware business
of today. There may be vendors that build discrete devices (reusable software com-
ponents), other vendors that build system components (.., a set of tools for human/
computer interaction), and system integrators that provide solutions (products and
custom-built systems) for the end-user.

Software engineering will change—of that we can be certain. But regardless of
how radical the changes are, we can be assured that quality will never lose its im-
portance and that effective analysis and design and competent testing will always
have a place in the development of computer-based systems.

900

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Technology Trends

P. Cripwell Associates (www.jpcripwell.com), a
consulting firm specializing in knowledge
management and information engineering, discusses five
technology drivers that will influence technology directions
in the coming years:

Combination technologies. When two important
technologies are merged, the impact of the merged result
is often greater than the sum of the impact of each taken
separately. For example, GPS satellite technology, coupled
with on-board computing capability, coupled with LCD
display fechnologies has resulting in sophisticated
auvtomobile mapping systems. Technologies often evolve
along separate paths, but significant business or societal
impact occurs only when someone combines them to solve
a problem.

Data fusion. The more data we acquire, the more data
we need. More importantly, the more data we acquire,
the more difficult it is to extract useful information. In fact,
we often need to acquire still more data to understand
(1) what data are important; what data are relevant to a
particular need or source, and what data should be used
for decision making. This is the data fusion problem. J. P.
Cripwell uses an advanced automobile traffic monitoring
system as an example. Digital speed sensors (in the
roadway) and digital cameras sense an accident. The
severity of the accident must be determined (via
camera?). Based on severity, the monitoring system must
Q\tcct police, fire, or ambulance; traffic must be

D,

rerouted; media {radio) must broadcast warnings; and
individual cars (if equipped with digital sensors or wireless
communication) must be informed. To accomplish this, a
variety of decisions, based on data acquired from the
monitoring system {data fusion), must be made.

Technology push. In years past, a problem surfaced
and technology was developed to solve it. Because the
problem was evident fo many people, the market for the
new technology was well-defined. Today, some
technologies evolve as solutions looking for problems. A
market must be pushed to recognize that it needs the new
technology (e.g., mobile phones, PDAs). As people
recognize the need, the technology accelerates, improves,
and often morphs as combination technologies evolve.

Networking and serendipity. In this context
networking implies connections between people or
between people and information. As the network grows,
the likelihood of synergy between two network nodes (e.g.,
people, information sources) also grows. A chance
connection {serendipity) can lead fo inspiration and a new
technology or application.

Information overload. A vast sea of information is
accessible by anyone with an Infernet connection. The
problem, of course, is to find the right information,
determine its validity, and then translate it into practical
application at a business or personnel level.

J

——32.7 THE SOFTWARE ENGINEER'S RESPONSIBILITY

Software engineering has evolved into a respected, worldwide profession. As pro-
fessionals, software engineers should abide by a code of ethics that guides the work
that they do and the products that they produce. An ACM/IEEE-CS Joint Task Force
has produced a Software Engineering Code of Ethics and Professional Practices (Ver-

sion 5.1). The code [ACM98] states:

A complete discussion)))))]

of the ACM/JEEE code Software engineers shall commit themselves to making the analysis, specification, de-
of ethics can be found sign, development, testing and maintenance of software a beneficial and respected pro-
o fession. In accordance with their commitment to the health, safety and welfare of the
m:':/'w‘l ’edul{ public, software engineers shall adhere to the following Eight Principles:

shim.

1. PUBLIC—Software engineers shall act consistently with the public interest.

CHAPTER 32 THE ROAD AHEAD 901

2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

3. PRODUCT—Software engineers shall ensure that their products and related modifica-
tions meet the highest professional standards possible.

4. JUDGMENT—Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and pro-
mote an ethical approach to the management of software development and maintenance.

6. PROFESSION—Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.

8. SELF—Software engineers shall participate in lifelong learning regarding the prac-
tice of their profession and shall promote an ethical approach to the practice of the
profession.

Although each of these eight principles is equally important, an overriding theme ap-
pears: a software engineer should work in the public interest. On a personal level, a
software engineer should abide by the following rules:

e Never steal data for personal gain.

o Never distribute or sell proprietary information obtained as part of your work
on a software project. :

o Never maliciously destroy or modify another person’s programs, files, or
data.

e Never violate the privacy of an individual, a group, or an organization.
o Never hack into a system for sport or profit.
e Never create or promulgate a computer virus or worm.
o Never use computing technology to facilitate discrimination or harassment.
Over the past decade, certain members of the software industry have lobbied for
protective legislation that [SEE03]:
1. Allows companies to release software without disclosing known defects;

2. Exempts developers from liability for any damages resulting from these
known defects;

3. Constrains others from disclosing defects without permission from the origi-
nal developer;

4. Allows the incorporation of “self-help” software within a product that can
disable (via remote command) the operation of the product;

5. Exempts developers of software with “self-help” from damages should the
software be disabled by a third party.

902

—i2.8 A CONCLUDING COMMENT

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Like all legislation, debate often centers on issues that are political, not technological.
However, many people (including this author) feel that protective legislation, if im-
properly drafted, conflicts with the software engineering code of ethics by indirectly ex-
empting software engineers from their responsibility to produce high-quality software.

It has been 25 years since the first edition of this book was written. I can still recall
sitting at my desk as a young professor, writing the manuscript (by hand) for a book
on a subject that few people cared about and even fewer really understood. I re-
member the rejection letters from publishers, who argued (politely, but firmly) that
there would never be a market for a book on “software engineering.” Luckily,
McGraw-Hill decided to give it a try,” and the rest, as they say, is history.

Over the past 25 years, this book has changed dramatically—in scope, in size, in
style, and in content. Like software engineering, it has grown and (I hope) matured
over the years.

An engineering approach to the development of computer software is now con-
ventional wisdom. Although debate continues on the “right paradigm,” the impor-
tance of agility, the degree of automation, and the most effective methods, the
underlying principles of software engineering are now accepted throughout the in-
dustry. Why, then, have we seen their broad adoption only recently?

The answer, I think, lies in the difficulty of technology transition and the cultural
change that accompanies it. Even though most of us appreciate the need for an en-
gineering discipline for software, we struggle against the inertia of past practice and
face new application domains (and the developers who work in them) that appear
ready to repeat the mistakes of the past.

To ease the transition we need many things—an agile, adaptable, and sensible soft-
ware process; more effective methods; more powerful tools; better acceptance by prac-
titioners and support from managers; and no small dose of education and “advertising.”
Software engineering has not had the benefit of massive advertising, but as time passes,
the concept sells itself. In a way, this book is an “advertisement” for the technology.

You may not agree with every approach described in this book. Some of the tech-
niques and opinions are controversial; others must be tuned to work well in differ-
ent software development environments. It is my sincere hope, however, that
Software Engineering: A Practitioner’s Approach has delineated the problems we face,
demonstrated the strength of software engineering concepts, and provided a frame-
work of methods and tools.

As we move into the twenty-first century, software has become the most impor-
tant product and the most important industry on the world stage. Its impact and im-

2 Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill that it
was worth a shot.

CHAPTER 32 THE ROAD AHEAD . 903

portance have come a long, long way. And yet, a new generation of software devel-
opers must meet many of the same challenges that faced earlier generations. Let us
hope that the people who meet the challenge—software engineers—will have the
wisdom to develop systems that improve the human condition.

— REFERENCES

[ACMS8] ACM/IEEE-CS Joint Task Force, Software Engineering Code of Ethics and Professional
Practice, 1998, available at http://www.acm.org/serving/se/code.htm.

[BECO1] Beck, K., et al., “Manifesto for Agile Software Development,” http://www.
agilemanifesto.org/.

[BOL91] Bollinger, T., and C. McGowen, “A Critical Look at Software Capability Evaluations,”
IEEE Software, July 1991, pp. 25-41.

[GIL96] Gilb, T., “What Is Level Six?” IEEE Soflware, January 1996, pp. 97-98, 103.

[HOP90] Hopper, M. D., “Rattling SABRE, New Ways to Compete on Information,” Harvard Busi-
ness Review, May-June 1990.

[PAU93] Paulk, M., et al., Capability Maturity Model for Software, Software Engineering Institute,
Carnegie Mellon University, 1993.

[PCM03] “Technologies to Watch,” PC Magazine, July 2003, available at
http://www.pcmag.com/article2/0,4149,1130591,00.asp.

[PRE91] Pressman, R. S., and S. R. Herron, Software Shock, Dorset House, 1991.

[SEE03] The Software Engineering Ethics Research Institute, “UCITA Updates,” 2003, available
at http://seeri.etsu.edu/default.htm.

PROBLEMS AND POINTS TO PONDER

32.1. Review the discussion of the agile, incremental process models in Chapter 4. Do some re-
search, and collect recent papers on the subject. Summarize the strengths and weaknesses of
agile paradigms based on experiences outlined in the papers.

32.2. Attempt to develop an example that begins with the collection of raw data and leads to
acquisition of information, then knowledge, and finally, wisdom.

32.3. Get a copy of this week’s major business and news magazines (e.g., Newsweek, Time,
Business Week). List every article or news item that can be used to illustrate the importance of
software.

32.4. Write a brief description of an ideal software engineer’s development environment circa
2010. Describe the elements of the environment (hardware, software, and communications
technologies) and their impact on quality and time to market.

32.5. One of the hottest software application domains is Web-based systems and applications.
Discuss how people, communication, and process have to evolve to accommodate the devel-
opment of “next generation” WebApps.

32.6. Provide specific examples that illustrate one of the eight software engineering ethics
principles noted in Section 32.7.

v L

Books that discuss the road ahead for software and computing span a vast array of technical,
scientific, economic, political, and social issues. Sterling (Tomorrow Now, Random House, 2002) re-
minds us that real progress is rarely orderly and efficient. Teich (Technology and the Future, Wad-
worth, 2002) presents thoughtful essays on the societal impact of technology and how changing

